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ABSTRACT: Surface wind plays a crucial role in many local/regional weather and climate processes, especially through

the exchanges of energy, mass, and momentum across Earth’s surface. However, there is a lack of consistent observations

with continuous coverage over the global tropical ocean. To fill this gap, the NASA Cyclone Global Navigation Satellite

System (CYGNSS) mission was launched in December 2016, consisting of a constellation of eight small spacecrafts that

remotely sense near-surface wind speed over the tropical and subtropical oceans with relatively high sampling rates both

temporally and spatially. This current study uses data obtained from the Tropical Moored Buoy Arrays to quantitatively

characterize and validate the CYGNSS derived winds over the tropical Indian, Pacific, and Atlantic Oceans. The validation

results show that the uncertainty in CYGNSS wind speed, as compared with these tropical buoy data, is less than 2m s21

root-mean-square difference, meeting the NASA science mission level-1 uncertainty requirement for wind speeds below

20m s21. The quality of the CYGNSS wind is further assessed under different precipitation conditions, and in convective

cold-pool events, identified using buoy rain and temperature data. Results show that CYGNSS winds compare fairly well

with buoy observations in the presence of rain, though at low wind speeds the presence of rain appears to cause a slight

positive wind speed bias in the CYGNSS data. The comparison indicates the potential utility of the CYGNSS surface wind

product, which in turn may help to unravel the complexities of air–sea interaction in regions that are relatively under-

sampled by other observing platforms.
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1. Introduction

Spaceborne measurements have provided unprecedented

insights in weather/climate research, advancing our under-

standing of the complexity of Earth–atmosphere interactions.

They have become instrumental in providing comprehensive

and reliable information, especially over complex and/or re-

mote regions, e.g., over ocean, where large gaps in data may

occur. There is a broad spectrum of satellite data applications,

including operational weather forecasting, drought monitor-

ing, and natural disaster assessment. For instance, satellite

observations currently play a key role in the initialization of

numerical models used for weather/climate forecasting. These

forecasts play a decisive role in decision-making in important

sectors such as food and water security, energy production,

agriculture, human health, and drought early warning.

A major shortcoming of traditional polar-orbiting satellites

is their infrequent temporal sampling rate at a given location,

which is typically approximately one or two samples per day,

depending on their swath width. As a consequence, finescale

temporal information is unavailable and the complete evolu-

tion of a mesoscale or synoptic process is typically under-

sampled. If the polar orbits are also sun synchronous, then the

observations are also likely to be biased if any systematic di-

urnal signals exist in the quantity of interest (e.g., wind speed;

Waliser and Gautier 1993). The significance of this issue is

expected to be regionally dependent, influenced by the

strength, character, and phase of diurnal variations.

Apart from these temporal sampling issues, most past and

current scatterometers use C (4–8GHz) or higher-frequency

Ku (12–18GHz) bands, which have known performance limi-

tations in rain conditions (Marzano et al. 2000; Weissman et al.

2002; Tournadre and Quilfen 2003; Milliff et al. 2004; Weissman

and Bourassa 2008; Portabella et al. 2012). In general, rain can

significantly affect the microwave radar signals in three possible

ways: 1) attenuation or absorption of the signal when it passes

through the rainy atmosphere; 2) scattering received by inter-

vening raindrops, leading to a modification in the radar signals;

and 3) by altering the roughness of the sea surface either

through a direct contact with rain drops or by local downdraft

and outflow wind due to rain (Balasubramaniam and Ruf

2020). The effect on sea surface roughness is due to ‘‘splashing,’’

which occurs at low winds when the sea surface is calm. When

rain strikes a calm water surface, it creates rings, crowns, or

stalks, each of which modifies the signal received by the radar,

resulting in an overestimate of the wind speed in calm sea
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surface conditions (Draper and Long 2004). Under high wind

conditions, the splashing process acts differently. In this case,

wind-driven rain can perturb and/or eventually modify the

scale of water waves by horizontal momentum transfer (Le

Méhauté and Khangaonkar 1990; Weissman et al. 2012). The

contribution of horizontal momentum transfer on water waves

is mainly dependent on the angle (from the nadir direction)

raindrops are falling onto the water surface. For instance, the

horizontal rain velocity component often prevails in high wind

condition. This may subsequently add to the wind effect, en-

hancing the amplitude of high-frequency waves (Le Méhauté
and Khangaonkar 1990).

Considering these important processes, and the uncer-

tainties in remotely sensing surface wind via radar, the recently

launched NASA Cyclone Global Navigation Satellite System

(CYGNSS) mission aims to measure near-surface wind speeds

over the tropical ocean remotely with relatively higher tem-

poral and spatial sampling rates. CYGNSS consists of eight

spacecraft, each carrying L-band receivers tuned to measure

the global positioning system (GPS) signals scattered from the

ocean surface in the forward direction. As such, the CYGNSS

mission is the receiver component of a bistatic radar system

for which the GPS constellation are the transmitters. Each

spacecraft is designed with one upward and two downward

looking antennas (port and starboard), measuring the GPS

signals from specular reflection points at a sampling frequency

of 1Hz. Each spacecraft flies in a circular low non-sun-

synchronous orbit at 358 inclination and 520-km altitude al-

lowing coverage of the whole tropics with higher temporal

sampling rates than other scatterometers. Because it contains

L-band (;1.6-GHz frequency or ;19-cm wavelength) sensors

and is sensitive to broader roughness spectra, which include

both capillary and gravity waves, CYGNSS is expected to be

less affected by rain than C- or Ku-band scatterometers.

In the early phase of the CYGNSS mission, development

and testing of the wind retrieval algorithm, accounting for the

variety of anticipated environmental conditions, is the primary

task. Since CYGNSS winds are estimated from remote mea-

surements, using a geophysical model function (GMF) that

maps CYGNSS backscattered coefficient (s0) to 10-m wind

speed (Ruf and Balasubramaniam 2019), errors in the esti-

mated values are expected. Recently, an overview of CYGNSS

wind performance has been presented by Ruf et al. (2019). The

emphasis of their study was on the CYGNSS performance

relative to NASA level-1 mission requirements, classified into

several subcategories such as: spatial and temporal sampling

properties; dynamic range and uncertainty of wind speed

measurements; and data validation and support for operational

data users. Thus, while their results included comparisons

versus available in situ measurements, their study did not ex-

plore the degree to which each contributing factor [e.g., wind

itself, sea surface temperature (SST), stability effects, and

other air–sea parameters] is responsible for introducing bias

and uncertainties in CYGNSS wind estimates. In this study, we

assess the performance of CYGNSS in different oceanic re-

gimes. This includes air–sea meteorological variables at and

near the surface and under different convective conditions

such as, rain and cold pools through a comprehensive and

quantitative evaluation of the CYGNSS derived wind speeds

using observations from the research-quality tropical moored

buoy arrays.

2. Data and validation approach

a. Data

CYGNSS level-2 v2.1 surface ocean winds, using the algo-

rithm for winds over fully developed seas (FDS), were ob-

tained from the NASA’s Jet Propulsion Laboratory (JPL)

PO.DAAC data web portal (https://podaac.jpl.nasa.gov/

dataset/CYGNSS_L2_V2.1). The data product provides the

time-stamped and spatially averaged wind speed at 25 km ef-

fective resolution that were determined from the delay Doppler

mapping (DDM) instrument mounted on the CYGNSS space-

crafts. The reported sample locations refer to the specular points

corresponding to the averaged DDMs. It has been found that

the transmit power fluctuations by GPS Block type IIF

CYGNSS spacecrafts can introduce bias into the L2 wind

speed retrievals (Ruf and Balasubramaniam 2019). Version 2.1

calibration, unfortunately, does not apply any correction to fix

this power fluctuation issue, and therefore in this version the

Block type IIF samples were not used in the evaluation against

buoy data (Ruf et al. 2019). In addition, the data points that

have a range corrected gain (RCG) value less than three were

flagged and not used. The smaller RCGs are often correlated

with a high incidence angle and lower signal strength, leading

to a higher degree of uncertainty in the wind estimates (Ruf

et al. 2016).

Surface wind and rain observations from the tropical

moored buoy arrays Prediction and Research Moored

Array in the Tropical Atlantic (PIRATA; Bourlès et al. 2008),
Research Moored Array for African–Asian–Australian

Monsoon Analysis and Prediction (RAMA; McPhaden et al.

2009), and Tropical Atmosphere Ocean (TAO; McPhaden

et al. 1998)/Triangle Trans-Ocean Buoy Network (TRITON)

were employed as reference data. Buoy measurements are

averaged over 60-min periods, andwere screened by discarding

any missing records as well as data flagged as lower quality

and/or with sensor failure. The accuracy for buoy wind speed is

60.3m s21 or 3% (see details at https://tao.ndbc.noaa.gov/

proj_overview/sensors_ndbc.shtml). Wind sensors record sus-

tained winds at sampling frequency of 2Hz over a 2-min

sampling period. A total of 240 samples were thus averaged

to produce 10-min winds, and then these 10-min winds were

averaged to produce hourly winds (K. Grissom, NOAA, 2019,

personal communication).

The significant wave height information was obtained from

the French Research Institute for Exploitation of the Sea

(IFREMER) andMeteo-France implementation of the ECMWF

WaveWatch3 (WW3) model. The datasets are publicly avail-

able at 0.58 grid spacing at 3-h intervals (ftp://ftp.ifremer/ww3/

HINDCAST/GLOBAL/).

b. Rain measurement correction for undercatchment

It has been observed that the rain gauges are susceptible to

undercatchment error under windy conditions. For instance,
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the undercatchment error can be as large as 50% in wind

speeds of 12m s21 (Koschmieder 1934). There are no under-

catch corrections applied directly to the data that we have

accessed from the NOAA/PMEL FTP site. Therefore, fol-

lowing simple yet efficient approach by Serra et al. (2001), a

third-order polynomial fit to the Koschmieder (1934) data was

employed to correct the undercatchment for the rain mea-

surements. Note that numerous methods (e.g., Habib et al.

1999; Ne�spor and Sevruk 1999) have been (and are still being)

proposed for the wind induced rain measurement correction.

However, none have been universally accepted. Moreover,

most of them are derived from laboratory studies and their

applicability in real world (e.g., over oceans) are limited due

to a lack of additional information required. For instance, the

approach byNe�spor and Sevruk (1999) requires information of

rain drop sizes, which is currently not available at the tropical

buoy sites. In contrast, the technique by Serra et al. (2001) is

much simpler to implement, since it does not require any hy-

drometeor drop size information. This method has already

been applied to the tropical Autonomous Temperature Line

Acquisition System (ATLAS) mooring measurements (Serra

et al. 2001).

c. Buoy height adjustment

CYGNSS winds are reported at 10-m heights from the sea

surface, whereas the buoy records are available at ;4m with

some exceptions. To make a direct comparison, buoy winds

were adjusted to 10-m height following Monin–Obukhov

(M-O) similarity theory as follows:
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whereU10 is the buoy scalar wind speeds at the adjusted height

Z10 (10m), u* the frictional velocity, L the Monin–Obukhov

length, z0 the surface roughness, k the von Kármán’s constant
(;0.4), and c represents the stability function.

Since satellite winds are derived from the radar back-

scattered signals, they uniquely respond to changes in sea

surface roughness. They are thus more sensitive to the wind

stress than the wind speed. Under a neutrally stratified marine

boundary layer condition, wind speeds are considered to be

uniquely related to satellite winds (Liu 1984). Hence, the buoy

actual winds were converted to equivalent neutral winds (U10n)

by removing the stability effects as follows:
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This can be understood by the fact that when the atmo-

spheric stratification is neutral, the Z10/L tends to zero, and

thus the stability function vanishes in Eq. (1). Using an em-

pirical constant value of roughness length, one can readily

calculate the reference wind at a desired height. However,

this approach does not fully account for the effect of atmo-

spheric stability on wind shear due to its fixed sea surface

condition and the assumption of uniform fluxes in the surface

layer. Previous studies suggest that a fixed roughness length

can introduce additional uncertainty in the adjusted wind

values. For instance, Mears et al. (2001) reported the mean

difference between these twomethods for adjustedwind values

is around 0.12m s21 (standard deviation 5 0.17m s21). Peng

et al. (2013) later noticed high biases (ranges from 0.11 to

0.17m s21) from the simple method. Therefore, to compute the

equivalent neutral winds, the bulk aerodynamic algorithm

CoupledOcean–Atmosphere Response Experiment (COARE)

version 3.6 (Edson et al. 2013; Fairall et al. 2003) was used in

this study. Specifically, the buoy measured air temperature, sea

surface temperature, relative humidity, and surface wind

speeds were provided as input to the algorithm to determine

the equivalent neutral winds at the 10m height. The COARE

algorithm is the successor to the Liu–Katsaros–Businger

(LKB) model (Liu et al. 1979), and is one of the most widely

used bulk aerodynamic algorithms in the world. The algorithm

has notable features, including the warm/cool-layer parame-

terizations that compute the skin correction to SST. To use the

cool-layer correction, one requires additional information such

as radiation data. Because the buoys measure bulk SST, and

the radiation records are sparse in the tropics, a 0.28C cool

offset in SST following Cronin et al. (2006) was implemented to

the cool-layer correction. In addition, the warm-layer correc-

tion was turned off in the current setup, as Cronin et al. (2006)

showed a limited effect with the correction (during January–

May) with the COARE 3.0 algorithm in the tropics.

d. Collocation method

CYGNSS derived FDS surface winds during the period

spanning 18 March 2017 to 31 August 2019 were validated

against the buoys. CYGNSS winds were matched to buoy

measurements within 25 km and 6 30min of buoy locations

and times (buoy time stamp refers to the middle of the hourly

averaging period), and collocation was performed via an

inverse-weighting scheme that accounts for both space and

time between the measurements (Boutin and Etcheto 1990).

Here the choice of the 25-km spatial threshold is motivated by

the fact that the effective footprint size of CYGNSS mea-

surement is approximately 25 km3 25 km over the ocean (Ruf

et al. 2019). Since CYGNSS observes at a 1-Hz frequency, it is

likely that multiple CYGNSS specular points fall near a buoy

location within the 25-km threshold and 630min. Our collo-

cation approach included all of the specular points along the

specular point track that were within the spatial and temporal

thresholds. A total of 83 buoys were available after the

matchups described here. This in turn leads to an aggregated

sample size of 24 261 time–spacematchup points after applying

the CYGNSS data quality flags.

e. Data processing for the residual dependency analysis

A quadratic fit was administered on the residual winds

(CYGNSS 2 buoy) versus buoy winds data following Liu

(1984). Then these data were subtracted from the CYGNSS

data to remove the wind dependency on the CYGNSS-derived

wind biases. To detect whether the dependency (in terms of

correlation) is statistically robust, we employed an effective

sample size based approach that accounts for lag-1 autocor-

relation in the data series (Bretherton et al. 1999). In this

analysis, the null hypothesis would be rejected if the value is
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at the 5% significance level (p value # 0.05). An air–sea

temperature-based analysis of stability is limited in that it does

not incorporate wind information. Hence, the stability effect

on the CYGNSS winds were examined through the bulk

Richardson number (BRi), following Eq. (1) in Ebuchi et al.

(2002). The BRi is essentially a ratio of buoyancy to shear

production of turbulence, indicating a dynamic condition of

the atmosphere.

f. Cold-pool detection

Convectively driven cold pools are sources of local wind

variability (gustiness), and are generally associated with

downdrafts and evaporation of rain beneath convective sys-

tems. Previous studies have reported the surface characteristics

and behaviors of meteorological variables related to cold pools

(e.g., Provod et al. 2016; Engerer et al. 2008; Eastin et al. 2012;

Yokoi et al. 2014; Whiteman et al. 2001; S. S. Chen et al. 2016;

de Szoeke et al. 2017; Chandra et al. 2018). These studies re-

ported rapid decreases in air temperature and humidity, along

with drastic changes in wind directions, wind speeds, and other

near-surface meteorological variables as cold pools pass over

surface observing locations. In this study, cold pools were de-

tected at the buoy locations, following Provod et al. (2016) and

Yokoi et al. (2014), as cases when the air temperature drops

1.58C or more over 1 h or 2.08C or more over 2 h (Kilpatrick

and Xie 2015). To ensure that a cold pool is driven by a con-

vective system, infrared brightness temperature (equivalent

blackbody temperature) from a merged 4-km satellite product

(Janowiak et al. 2017) was required to be less than 241Kwithin

100 km (detection of deep convection). It is known that shallow

convection can also generate cold pools (Rowe and Houze

2015). To remove the ambiguity, ‘‘no-cold-pool’’ events are

defined as periods with no such changes in temperatures at

the buoy locations.

3. Results and discussions

a. Direct comparison

In this section, comparisons between surface winds from

CYGNSS and the buoys are presented at both global and

regional levels.

1) GLOBAL PERFORMANCE ANALYSIS

A general agreement between collocated buoy and CYGNSS

winds can be seen in the figure (Fig. 2a, which shows their global

scatterplot). The highest density of points (reddish colors) lies

along the 1:1 line, which is concentratedwithin the wind range of

5–7m s21. However, CYGNSSwinds can be substantially higher

than the buoy winds in the same range. The mean bias m

(0.27m s21) is computed as an average over all buoys; its low

value is due in part to compensating errors. For instance, over

the far east Pacific and Atlantic Oceans, the biases are un-

derestimated in most of the buoys, whereas in the central and

west Pacific, as well as the Indian Ocean, they are highly

overestimated (not shown). When biases are computed for

individual buoys, they can be larger than 1.5m s21, especially in

the northern and southern sections of central equatorial Pacific

belt. The root-mean-square difference (RMSD) over all buoys

is 1.86m s21, which is about 77% of the standard deviation of

the buoy measurements (sb 5 2.41m s21). Together taking

into account the buoy wind accuracy of 3% and assuming

negligible inherent matchup uncertainty, the upper bound of

the CYGNSS retrieval uncertainty (,20m s21 for CYGNSS

wind case) is found to be ;1.8m s21. This value is greater

than the previously reported value of Ruf et al. (2019). It must

be noted that the matchup samples are relatively one year

longer in the present analysis than the previous buoy validation

analysis. If the time period is considered to be the same as

prescribed by Ruf et al. (2019) then the RMSD value is found to

be in good agreement with their findings irrespective of the

different bulk algorithms (Zeng et al. 1998) used in the two

studies.While the overall shapes of the buoy andCYGNSSwind

probability distributions are similar, there are some discrep-

ancies, especially at the higher and lowerwind speeds, where the

wind comparisons exhibit the greatest differences (the histo-

gramfigure in the inset plot of Fig. 2a). For example, at the lower

(higher) wind speeds, CYGNSS has higher (lower) frequency of

occurrence compared to the buoys. Moreover, the results from

CYGNSS yield a relatively higher number of samples in the

higher wind speed range than the buoy measurements, which is

partly due to the buoy winds rarely exceeding speeds of 15m s21

in the tropics (Yu and Jin 2012).

The analysis of the dependence of the wind speed difference

(CYGNSS–buoy) on thewind speed itself (represented here by

the buoy) shows that the bias is small and positive (i.e.,

;0.5m s21) for wind speeds below ;3m s21, near zero in the

buoy wind range of approximately 3–9m s21, and negative at

higher wind speeds, approaching approximately 23m s21at

speeds near 15m s21 (Fig. 3a). The RMSD values remain be-

low 2m s21 in the wind speed range of ;1–10m s21. The 95%

error bars show that the confidence in the estimated bias values

at extreme wind speeds has low statistical significance due to

the relatively small sample size. Detailed statistical informa-

tion at different buoy wind range conditions are given in

Table 1. Here the choices of low and high winds criteria were

based on two thresholds: 1) below the lower tercile and 2)

above the 95th percentile of the aggregated buoy wind distri-

bution. The moderate buoy-based wind denotes the values

between these two wind thresholds.

2) REGIONAL PERFORMANCE ANALYSIS

Since the tropical oceans exhibit large spatial and temporal

variations in meteorological conditions, they are divided into

three oceanic subregions: the Atlantic, Pacific, and Indian

Oceans, as depicted in Fig. 1. These subregions provide ag-

gregate representations of different types of background cli-

matology and variability. For instance, the Atlantic Ocean is

characterized by a strong seasonal cycle. The Pacific Ocean is

the largest of the world’s oceans and exhibits heterogeneous

SST variations, both latitudinally and from east to west. The

Indian Ocean is the warmest ocean in the world, and contains

the core of the large-scale tropical warm pool. Thus, the wind

speeds of these subregions, compared with the observations,

will indicate the performance of CYGNSS under different

natural variability conditions.
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Scatterplots produced for each region show a general

agreement along the diagonal 1:1 line, though larger differ-

ences are observed at higher wind speeds in the Atlantic and

Pacific Oceans compared to the Indian Ocean (Fig. 2b).

However, compared to the other two regions (Figs. 2c,d), the

Indian Ocean shows relatively less density in the data points

along the 1:1 line. Although CYGNSS shows similar error

behavior in all three ocean regions, the RMSD values are

different in the three regions (Fig. 3). The Indian Ocean ex-

hibits slightly larger overall RMSD value (1.94m s21), which is

more pronounced (2m s21) at the moderate wind speeds, than

the Atlantic and Pacific Oceans (1.90 and 1.82m s21, respec-

tively). In contrast, at the extreme winds, the higher RMSD

values (1.84m s21 for low and 3.76m s21 for high wind speeds)

are observed in the Atlantic Ocean. It can be seen from Fig. 3

that the wind speed distributions for the three oceans show

similar shapes at the higher and lower wind speed ranges.

However, the Indian ocean exhibits a slightly flatter distribu-

tion (Fig. 2b) than the other two oceans (Figs. 2c,d)—indicating

a more uniform distribution of low to moderate wind values.

The number of extreme wind events (i.e., winds in the 13

and 14m s21 in Fig. 3) is found to be larger in the Indian Ocean

than in the Atlantic Ocean. It is worth mentioning that the

CYGNSS data are more sensitive and experience relatively

larger errors at the extreme wind speeds (Fig. 3 and Table 1).

b. Effects of the air–sea state

Exploring the effects of the atmosphere–ocean conditions

on the observed wind speeds is crucial. Biases introduced by

air–sea state and exchange processes have the potential to in-

troduce biases into the applications of wind-derived products,

such as in the estimation of surface heat fluxes (Crespo et al.

2019). To assess the potential impact of these conditions on the

matchups, wind difference residuals are regressed against a

number of air–sea conditions. Specifically, Fig. 4 and its sta-

tistical summary on each panel show the regression slope and

correlation values obtained from CYGNSS-buoy wind resid-

uals against variables such as air temperature, SST, and relative

humidity, considering the tropics as a whole, and separately for

the three ocean subregions. The regression statistics reveal that

no specific air–sea condition systematically accounts for much

of the remaining residual error (Fig. 4). Furthermore, the error

dependency on the air temperature (Figs. 4e–h) and SST

(Figs. 4a–d) has nearly the same slope magnitude in all three

oceans. However, the dependency on SST is slightly greater in

the Indian Ocean (Fig. 4a) than that of the Atlantic and Pacific

Oceans (Figs. 4b,c), where it shows a small (only 1% explained

variance) but statistically significant negative relationship with

the wind residuals (decreasing rate 0.16m s21 with increase in

18C SST). One can notice that the sample distributions be-

tween Figs. 4i–l and Figs. 4m–p are not consistent. The near-

surface atmosphere is typically unstable to near neutrally

stratified over the global tropical oceans. As such, SST is typ-

ically slightly larger than the air temperature, and most of the

samples in Figs. 4i–l are concentrated near values of Tair – SST

near, and slightly smaller than, zero. If the air were perfectly

still (no wind), then one would indeed expect the relative hu-

midity values to approach 100% as the air–sea temperature

TABLE 1. Global and regional summary of statistical parameters [matchup sample size (N), mean bias, RMSD, and correlation coefficient

(Corr.)] of wind speed between CYGNSS and buoy at different buoy-measured wind ranges.

Coverage

Buoy wind range (m s21)

Low (U10n , 5) Moderate (5 # U10n $ 12) High (U10n . 12) Full

N Bias RMSD Corr. N Bias RMSD Corr N Bias RMSD Corr. N Bias RMSD Corr.

Global 6418 0.5 1.73 0.50 17 646 0.21 1.89 0.56 197 22.05 3.07 0.17 24 261 0.27 1.86 0.76

Indian 1538 0.29 1.72 0.48 3366 0.19 2.00 0.63 124 21.62 2.75 0.06 5028 0.17 1.94 0.80

Pacific 3696 0.54 1.71 0.52 10 181 0.34 1.86 0.53 29 22.36 3.18 0.18 13 906 0.39 1.82 0.75

Atlantic 1184 0.64 1.84 0.43 4099 20.08 1.89 0.56 44 23.03 3.76 0.43 5327 0.05 1.90 0.70

FIG. 1. The tropical moored-buoy array: Prediction and Research Moored Array in the

Tropical Atlantic (PIRATA), Research Moored Array for African–Asian–Australian

MonsoonAnalysis andPrediction (RAMA), and Tropical AtmosphereOcean (TAO)/Triangle

Trans-Ocean Buoy Network (TRITON) for winds (circles) and rainfall (plus signs). More

details on the tropical buoys are given on the NOAA/PMEL website (www.pmel.noaa.gov/

gtmba/mission).
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difference approaches zero. However, this is rarely, if ever, the

case. In the presence of even slight wind, there will be mixing

between the near-surface air and the air higher in the boundary

layer, causing RH values to be less than 100%.

The dependency analysis is also performed after bin aver-

aging the analyzed air–sea data (Fig. 5). Over an SST range of

208–278C, the biases in CYGNSS winds are found to be almost

independent of SST change (Fig. 5a). After exceeding the 278C
SST, a negative trend emerges that tends to be steeper for the

Atlantic Ocean. Because the negative slopes were prominent

mostly at warmer SST values (;.278C) and the Indian Ocean

has predominantly warmer SST relative to the other ocean

basins (as revealed from the matchup data points shown in

Fig. 4a), the SST dependency is relatively stronger in the Indian

ocean compared to the Atlantic and Pacific Oceans (Fig. 5a).

The SST sensitivity of the CYGNSSwinds can be related to the

s0 relation with the Fresnel coefficient (Ruf et al. 2016) that

incorporates the dielectric parameter of seawater, a function of

temperature and/or salinity. A similar pattern appears to be

found for the air temperature (Fig. 5b), though below ;278C,

the Indian ocean exhibits a larger departure in bias from the

remaining two seas.

Although we find no robust wind bias dependency with re-

spect to relative humidity, a slight increasing trend with in-

creasing moisture content can be seen in all regions (Fig. 5c).

Since there are few points with large values of relative

humidity, no conclusions can be drawn about possible corre-

lations between the quality of the CYGNSS wind speed esti-

mates and the atmospheric water vapor content.

It is possible that the temperature and SST dependencies

may be related to the near-surface stability. The equivalent

neutral wind is assumed to be free from the stability effects due

to its direct relation to a given surface stress when the atmo-

sphere is neutrally stratified (Liu 1984). If stability effects on

the wind profile are not correctly specified, it is probable that

scatterometer winds will have systematic stability-dependent

errors. Figure 5d shows the bias dependency on the air and sea

surface temperature difference. The differences between the

air and sea surface in general reflects the atmospheric stratifi-

cation. When the sea surface temperature is larger than the air

FIG. 2. Two-dimensional density plot of collocated CYGNSS and tropical buoy wind speeds: (a) global tropics,

(b) Indian Ocean, (c) Pacific Ocean, and (d) Atlantic Ocean. The diagonal gray line is the 1:1 agreement. The

statistical parameters RMSD, m, s, sb, and N are the root-mean-square difference, mean bias (CYGNSS–buoy),

standard deviation of the difference (CYGNSS–buoy), standard deviation of buoy winds, and the total sample size

of the collocated CYGNSS and buoy wind data, respectively. Inset figures show the surface wind histograms (bin

width: 1m s21) for both CYGNSS and buoys.
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temperature, the atmosphere is considered to be unstable;

whereas, in the opposite case (air temperature is greater than

SST), the atmosphere is considered to be stable. From Fig. 5d,

it can be seen that the bias is positive and relatively large for

both unstable and stable stratification, albeit the sampling

uncertainties are larger at the extrema of the range of values. In

contrast, the dependence on air–sea temperature difference

decreases and approaches to a minimum for slightly unstable

conditions (Tair – SST ;21.08C; Fig. 5d). The features are in

agreement with those presented in Ebuchi et al. (2002) and Liu

(1984). The matchup samples are further categorized by ag-

gregating into four different seasons (fall, summer, winter,

spring) for each of the four regions (global, Indian, Pacific,

Atlantic). Based on these samples, we find that the stable at-

mosphere, i.e., the positive temperature gradient between Tair

and SST (Tair 2 SST), frequently occurs during the summer

season in all three ocean basins (not shown). Under the stable

atmospheric condition (i.e., Tair . SST) and considering the

four seasons, the mean bias between CYGNSS and buoy winds

is largest for the summer season (0.9m s21 with the above zero

70% of the total number of samples) over the Indian ocean. In

contrast, the maximum wind biases are encountered in the fall

and winter seasons for the Atlantic ocean, which are 1.18m s21

(62% samples above zero) and 1.12m s21 (69% samples above

zero), respectively. In the Pacific ocean, the leading mean

biases are for winter (0.9mm s21 with 70% positive samples)

and the spring (0.81m s21 with 70% positive samples) seasons.

Figure 6 shows that the BRi values are mostly negative with

few positive, indicating atmosphere is predominantly unstable

to nearly neutral stratified. CYGNSS appears to be biased high

in unstable conditions (Fig. 6). Previous studies suggest that

unstable conditions favor vertical exchange processes that

eventually increase the roughness of the sea surface, contrib-

uting to an increase in surface scattering of microwave radia-

tion (McCarty and Churnside 2016; Quilfen and Bentamy

1994). In the present analysis, when wind is incorporated in the

analysis of stability, the positive bias in the CYGNSS wind

estimates attains its minimum value when the near-surface

atmosphere is close to neutral conditions. While the number of

data samples are very small, a slight increasing trend in bias is

observed when the atmosphere moves from neutral to more

stable (Fig. 6). The patterns are aligned with the portion of

Fig. 5d for which the air temperature becomes warmer than

the SST.

c. Rain influence

As mentioned above, rain may affect scatterometer signals,

especially at higher frequencies. Though it is expected that the

influence of rain on the L-band CYGNSS signal should be

minimal, it is possible that in light wind and heavy rain

FIG. 3. RMS (blue line) andmean (red line; CYGNSS2 buoy) difference between collocated buoy andCYGNSS

wind speeds as a function of buoy wind speed: (a) global tropics, (b) Indian Ocean, (c) Pacific Ocean, and

(d) Atlantic Ocean. The solid error bars correspond to the 95% confidence limit, whereas the dashed error bars are

the standard deviation. These metrics were computed over a 60.5m s21 bin width for every 1m s21 buoy wind

speed. Dashed horizontal lines tick the y axis at a 1m s21 wind interval. The gray bars and label on top of each bar

indicate the sample size in each group of 60.5m s21 bin width.
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conditions there may be an effect on the bias and RMSD of the

CYGNSS wind. In particular, rain-induced waves modulate

the sea surface roughness and may introduce additional errors

in the wind retrieval process by altering the signals scattered

from the sea surface. Recently Balasubramaniam and Ruf

(2020) examined the rain effects on CYGNSS normalized

backscattered coefficients and found out that the rain induced

sea surface roughening effect is significantly stronger than the

rain-based attenuation of the GPS signal. Because the rain

effects are likely to be larger at low wind speeds, we divide our

analyses into two wind speed ranges (following Asgarimehr

et al. 2018); one for wind speeds less than or equal to 6m s21

and the other for wind speeds greater than 6m s21. Before

conducting the rain analysis, we removed the wind dependency

on CYGNSS residuals. Additionally, we performed the same

rain effect analysis on the low wind values (i.e.,# 6m s21) that

did not exceed the lower tercile value (1.61m) of the collocated

significant wave height distribution. Thus, this analysis isolates

not only relatively lower wind speeds, but also relatively quiet

seas in terms of surface wave activity. The presence of high

FIG. 4. Two-dimensional density plot of wind difference (D refers to CYGNSS2 buoy) as function of buoymeasured (a)–(d) sea surface

temperature (SST; in 8C), (e)–(h) air temperature (Tair; in 8C), (i)–(j) difference between Tair and SST (in 8C), and (m)–(p) relative

humidity (in %). Correlation and slope of linear fit of the wind speed residuals (CYGNSS 2 buoy) with the atmospheric and oceanic

variables at global and regional scales are added in each panel. The 95% significance level (Bretherton et al. 1999) of the correlation

coefficient is indicated by an asterisk., and N is the total sample size of the collocated CYGNSS and buoy wind data. The best-fit linear

regression line onto the scatterplot is marked by a solid black line.
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wave activity can alter the rain effect on the backscattered

signals, especially when the wind is misaligned with the wave

propagation direction.

Figure 7 shows the influence of rain on the wind residuals at

wind speeds less than (Figs. 7a,b) and greater than (Figs. 7c,d)

6m s21. One can observe from the figure that CYGNSS has a

small positive bias that increases with rain rate at low wind

speeds (Fig. 7b). This increase in bias with rain rate appears to

be present for low and high significant wave heights. The

RMSD values for low wind speeds (Fig. 7a) are significantly

higher in the presence of rain (e.g., R. 1.0) than when little to

no rain is present (R, 0.1mmh21). We do note, however, that

the sampling uncertainties are larger at higher precipitation

rates (especially when the dataset is restricted to low-wave

conditions), as can be seen from the large error bars in the

RMSD values (Fig. 7a). The positive trend with precipitation

rate in the wind RMSD and bias at low winds can be related to

the expected predictions of weak diffuse scattering model for

winds below ;5–6m s21 (Zavorotny and Voronovich 2000).

Moreover, the current calibration does not account or correct

for rain induced attenuation (Balasubramaniam and Ruf

2018). At wind speeds greater than 6m s21, the effect of rain on

the RMSD and bias is relatively small (Figs. 7c,d).

d. Performance in cold pools

Cold pools occur more frequently over the Indian and west

Pacific regions where deep convection with much larger cloud

cover is common. The collocated sample density of the de-

tected cold pools is thus larger over the Indian and adjoining

west Pacific regions than over the east Pacific and the Atlantic

Oceans (not shown here). Examining the cold-pool sample,

relative to no-cold-pool (Fig. 8a), shows that the CYGNSS

wind speeds exhibit RMSD errors ;34% higher during cold-

pool events (RMSD ;2.34m s21) than no-cold-pool events

(RMSD ;1.75m s21). Note that the sample size for the cold-

pool cases is relatively small compared to no-cold-pool cases,

though the differences in RMSD values are statistically

FIG. 5. Wind bias (CYGNSS2 buoy) as function of buoy measured for global and regional oceans: (a) SST (bin

width:60.258C), (b) air temperature (Tair, bin width:60.258C), (c) relative humidity (RH, bin width:61.5%), and

(d) difference between Tair and SST (bin width: 60.18C). The error bars correspond to the 95% confidence limit

estimated via bootstrap (random sampling of the dataset is 1000 times with replacement). The stacked bars in light

colors (gray, red, blue, and green represent the global, Indian, Pacific, and Atlantic Oceans, respectively) indicate

the matchup sample size.

FIG. 6.Wind bias (CYGNSS2 buoy) as function of buoy derived

bulk Richardson number (BRi, bin width: 60.05) for global and

regional tropical seas. The error bars (for global tropics only)

correspond to the 95% confidence limit estimated by the boot-

strapping approach. Collocated sample size in each bin for the

analyzed oceans is given by numbers at bottom.
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significant. The increasedRMSD in CYGNSSwinds during the

cold-pool periods provides motivation to examine the depen-

dence of the residuals on the cold-pool intensity. To this end,

the slope and correlation coefficients were estimated from the

wind residuals as a function of maximum temperature decrease

(DT) during the cold-pool periods. In general, the near-surface

air temperature is expected to decrease and attain a peak value

during amature stage of a convective cold pool. The parameter

DT, therefore, can be related to the intensity of a convective

downdraft that likely passed over a buoy location or its

immediate vicinity. The observed relationship between the

wind residuals and the cold-pool intensity shows a slight in-

creasing slope with increasing cold-pool intensity (Fig. 8b).

Given the slope and correlation values, it indicates a small, but

not statistically significant, dependency on the cold-pool intensity.

e. Dependency on the spacecraft and
antenna configurations

Two downward-looking science-based antennas are moun-

ted on each CYGNSS spacecraft, one directed starboard of the

FIG. 7. (a),(c) RMSD (indicated by bars) and (b),(d) scatterplot of CYGNSS winds at the analyzed buoys

(negative means buoy values are higher) as functions of buoy precipitation rate at different rain (R; in mm h21)

conditions.U10n is the buoy equivalent neutral wind at 10-m height and SWH is the significant wave height. Also the

best-fit linear regression lines onto the scatterplots are shown in (b) and (d). The black bars and lines shows data in

all wave conditions, whereas the red color is for the filtered data (SWH, 1.61m). The error bars correspond to the

95% confidence limit estimated via the bootstrap method. Matchup samples are illustrated by number on each bar.

FIG. 8. (a) RMSD between CYGNSS and buoys winds under cold-pool and no-cold-pool conditions (during

2017–18). The error bars represent the 95% confidence interval estimated by the bootstrapping approach. (b)Wind

residuals as functions of the cold-pool intensity. Also shown are best-fit lines onto the scatterplots. Sample size is

given by numbers on the bars in (a).
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subsatellite track and the other directed port, to provide the

observations used to retrieve wind speeds. Differences in the

precision and bias of wind estimates made by the two antennas

and across the eight CYGNSS spacecraft (FM01 to FM08) are

considered here.

The validation results indicate a clear tendency of positive

wind bias in all spacecrafts (cf. Fig. 9a). However, the magni-

tude and sign of the bias varies between the antennas, and in

some cases differs significantly from the mean bias value of

0.4m s21 (Fig. 9a, dashed line). The three largest biases are

found for the starboard antenna on FM05 (10.9m s21), star-

board antenna on FM03 (10.6m s21), and port antenna on

FM01 (10.6m s21). Differences in RMSD can also be seen

across the eight CYGNSS spacecrafts, with the highest values

exhibited by the starboard antennas on FM03 and FM05 (2 and

2.3m s21, respectively), and the port antennas on FM01

(2.2m s21) and FM06 (2m s21). Between these two statistics,

the greatest outlier of the group is probably FM05. In addition,

relatively small but significant differences in bias between

starboard and port antennas (;0.2m s21) were also found

when categorizing the data for the Northern versus Southern

Hemisphere tropics. The port antennas are directed largely to

the north of the subsatellite track whereas the starboard an-

tennas are directed largely to the south. This results in an

asymmetric sampling of northern and Southern Hemisphere

oceans between them. It is therefore possible that the observed

differences in retrieval bias may be related to geophysical-

driven biases associated with north–south asymmetries in the

tropics, such as exhibited by the intertropical convergence zone

(ITCZ; Waliser and Jiang 2015). However, all eight spacecraft

have very similar northern versus Southern Hemisphere sam-

pling properties and the antenna-dependent biases do not

follow a consistent trend across the eight spacecraft, so it is

more likely the differences in bias, both between antennas and

between spacecraft, are caused by residual errors in the engi-

neering calibration, which is performed individually for each

spacecraft and antenna. This is an ongoing area of investigation

by the CYGNSS project team and the results presented here

should be considered only as diagnostic features of the

performance.

4. Summary and conclusions

Cyclone Global Navigation Satellite System (CYGNSS)

wind estimates were compared with winds observed by tropical

moored buoy arrays over a period of;27.5 months. The results

showed that, in general, CYGNSS captures the wind speed

distributions effectively. Comparisons between the collo-

cated buoy and CYGNSS wind speeds showed a general

agreement along the 1:1 line globally and in each ocean basin

(Fig. 2). However, there are some discrepancies, especially at

the lower and higher observed extreme values of the wind

speeds. For example, the CYGNSS bias is small and positive

(i.e.,,10.5 m s21) at wind speeds less than 3m s21, near zero

at wind speeds ranging between approximately 3 and 9m s21,

and negative at higher wind speeds (Fig. 3a). Ruf et al. (2018)

suggested that the decrease in sensitivity of the geophysical

model function (GMF) with increasing wind speeds is one

of the main factors responsible for the error growth at

high winds.

On the whole, CYGNSS wind retrievals meet the science

mission requirements for all rain conditions (Fig. 1 in Ruf et al.

2019). However, the rain driven splashing effects are found to

be significant at low wind speeds (Figs. 7a,b), which is consis-

tent with the earlier rain sensitivity analyses of Asgarimehr

et al. (2018) and Balasubramaniam and Ruf (2018, 2020). The

differences can be expected from the predictions of the weak

diffuse scattering model (Zavorotny and Voronovich 2000) at

the low wind condition, and the downdraft of a convective

system (Balasubramaniam and Ruf 2020). The downdraft

effect can be sensed from the decreased performance of

CYGNSS wind speeds under cold-pool environments (Fig. 8).

Our analyses indicate that the rain effects are evident at high

winds too (above the 12m s21; not shown), yet the sampling

FIG. 9. (a) Bias and (b) RMSD between CYGNSS and buoy winds in each CYGNSS

spacecraft (FM01 to FM08), for antenna (starboard and port), and for combined antenna

(‘‘ALL’’). Sample size is given by the numbers on each bar in (b). Horizontal dashed lines are

the combined spacecraft bias value in (a) and RMSD in (b), whereas the error bars represent

the 95% confidence interval estimated by the bootstrapping (random sampling at 1000 times

with replacement) approach.
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confidence is rather low. Therefore, considerable data are yet

to be assessed for a robust conclusion of the rain effect at the

high wind condition.

The retrieved winds are further evaluated in three distinct

oceanic regions: Indian, Pacific, and Atlantic (Fig. 1). Similar

CYGNSS wind error characteristics are observed for all three

regions. While the global comparisons between CYGNSS

winds and buoy measurements are generally consistent with

those observed in the regional scale (Figs. 3b–d), the Indian

ocean exhibits a slightly larger error than in the Pacific and

Atlantic Oceans (Figs. 2b–d). Because the wind speeds ob-

served by CYGNSS are sensitive to rain at low wind speeds

(,;6m s21) and lower wind speeds are observed in the Indian

and west Pacific Oceans, it is likely that additional errors are

introduced in this region.

It is worth noting that the bias dependency is positive and

yieldedmagnitudes of same order at both the unstable (Figs. 5d

and 6) and stable (Fig. 5d) atmosphere. While the atmosphere

is found to be mostly unstable to nearly neutral over the

tropical ocean, the wind bias dependency on stability suggests

that care must be taken while analyzing the CYGNSS winds

in a stable atmosphere. The dependency is found to be at a

minimum in near-neutral conditions. Our analysis further re-

veals that by CYGNSS wind speeds exhibit errors that are

higher by ;34% during cold-pool versus no-cold-pool events,

albeit the number of cold-pool occurrences is very small

compared to the number of no-cold-pool (Fig. 8a) cases. Since

cold pools are often associated with wind gustiness and changes

in the air–sea state, they can modify the signal received

by CYGNSS (e.g., through roughening the sea surface).

Moreover, the influences of response time from the sea state

to the CYGNSS wind estimates are crucial. Recently D. D.

Chen et al. (2016) estimated that the CYGNSS response time

from a change in the wind to a discernible change in the wave

spectrum is about 0.4 to 1.8 h. Given the fact that a cold pool

is a short time-scale process (often considered as subhourly

scale) and its boundaries move fast, the differences in errors

in the CYGNSS wind speeds for no-cold-pool versus cold-

pool may correspond to the signal response time of the sea

state that may not be accounted for in the wind retrieval

process. A further independent analysis (not shown here)

revealed that the uncertainty of the RMSD in CYGNSS

winds is comparable with the estimated RMSD values by

two different sensors [e.g., the Advanced Scatterometer

(ASCAT-A and ASCAT-B)]. The similar error pattern,

specifically in a cold-pool-type environment, in different sen-

sors leads one to wonder about the validity of the reference

data, e.g., the buoy wind height adjustment, which followed the

assumption that the vertical wind profile is logarithmic in na-

ture. It appears that interpretations of the error characteristics

during the cold pool are not straightforward and require fur-

ther investigations.

Aside from the environmental and geophysical effects, a

potential source of uncertainty in the CYGNSS retrieved

winds can be attributed to characterization of its hardware and

engineering calibration errors. These are an active area of re-

search by the CYGNSS community. Notwithstanding the error

characteristics identified in this study, and the associated

caveats in the interpretation of the results, comparison be-

tween CYGNSSwind speed estimates and buoymeasurements

indicates considerable utility of the CYGNSS surface wind

data. The dense spatial and temporal sampling, compared with

other space-borne wind sensing missions, may help to reveal

the complexities of the air–sea interaction in relatively un-

dersampled. While the present wind retrieval uncertainty

satisfies the mission specific requirement for wind speeds

below 20m s21, there is a considerable scope for further im-

provement, and upcoming revisions to the algorithms are

expected to further reduce the errors in the CYGNSS esti-

mated winds. For instance, efforts have been made to

perform a bias adjustment and trackwise correction, and to

utilize improved training datasets to generate the CYGNSS

GMF for the level-2 wind speed product. This significantly

removed spurious trend in the retrieved wind. Initial results

from the new wind speed product (version 3.0) are promis-

ing, and updates to are expected to appear publicly on the

JPL PO.DAAC web portal in the near future.
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